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-ABSTRACT
Integral averages of weak subsolutions (and supersolutions) in Rn of

quasilinear elliptic and parabolic equations are investigated. The important

feature is that these integral averages are defined in terms of measures that

reflect interesting geometric phenomena. Harnack type inequalities are

established in terms of these integral averages.
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This report investigates some regularity properties of weak (non-

classical) subsolutions of a wide class of quasilinear elliptic and parabolic

equations with discontinuous coefficients. The main thrust of the

investigation is focused on the classical concept of Lebesgue point and the

related integral average of weak subsolutions. However, we deviate from the

classical context by employing integral averages that are defined in terms of

a general class of measures.. As a particular consequence of the analysis,

Harnack type inequalities for weak subsolutions of elliptic equations are

obtained that estimate the difference between the supremum of a weak solution

in a solid ball in Rn and its integral average over a sphere of suitable

lower dimension. In the case of parabolic equations, it is shown that the

supremum of a weak subsolution in a cylinder in Rn+ 1 can be estimated in

terms of its integral average over the lateral boundary of a suitable

subcylinder.

The responsibility for the wording and views expressed In this descriptive
suimary lies with MRC, and not with the author of this report.



9.

Mean Values of Subsolutions of Elliptic
and Parabolic Equations

William P. Ziemer

1. Introduction. In the theory of regularity of weak solu-

tions that arises in partial differential equations and the cal-

culus of variations, the analysis of the set of Lebesgue points

frequently plays an important role. A point x0 E R
n  is said

to be a Lebesgue point of a function u if there is a number

. (x 0 such that

lim r-n  u(y) - £(xo) Idy = 0
rio B(x0,r)

Here B(x0 ,r) denotes the open ball of radius r centered at

x0 . If u is a weak solution of a partial differential equa-

tion, certain regularity properties of u often hold at its

Lebesgue points. In many instances it is necessary to investi-

gate the Lebesgue set and the associated integral averages of

weak subsolutions and supersolutions. Perhaps the best known

results in this connection are those that pertain to subharmonic

functions. These results state that if u is subharmonic in

Rn , then u has the following sub mean-value properties:

-1
U(X0 ) (c(n)rn) 'BJxor u(y)dy

(1) u(x 0 ) : (nca(n)rn) - u(y)do(y)

aB(x0,r)

where c(n) denotes the volume of the unit ball in Rn . Other

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041



II

Iresults in this direction are the well known Harnack inequalities

for weak subsolutions and supersolutions of elliptic and parabolic

equations, [M], (T1], [T2].

In this paper we investigate integral averages of weak sub-

solutions of elliptic and parabolic quasilinear equations. This

work was motivated by [Zi] in which the analysis of Lebesgue

points of weak subsolutions of parabolic equations played a vital

role in determining the regularity properties of weak solutions

of a wide class of degenerate parabolic equations.

In §4 of this paper we consider weak subsolutions of equa-

tions of the form

(2) div A(x,u,ux ) = B(x,u,ux )x x

where A and B are measurable functions subject to certain

structural inequalities, see (12) below. Because of this struc-

ture, it is natural to require that weak subsolutions of (2) lie

1,in the Sobolev space W . Our results for weak subsolutions

u of (2) are somewhat analogous to (1) in that we relate sup u

in B(x0,r) to the integral average of u over an (n-k)-sphere

of radius r and center x0 , where 1 5 k < p . This is a

special case of the main result which allows consideration of

integral averages of subsolutions that are defined in terms of

certain non-negative measures, (Theorem 4.6). Of course, similar

results are valid for weak supersolutions. In §3, we consider

u W without assuming that u is a subsolution of (2) and

show that the integral averages, that are defined relative to

certain measures, converge everywhere to u exceat possibly on

a set whose dimension is n - p.

.2-



In 55 we consider weak subsolutions of parabolic equations

of the form

(3) ut = div A(x,t,u,ux) + B(x,t,u,u x)

We establish results which are analogous to those obtained in the

elliptic case. In particular we show that the supremum of a weak

subsolution of (3) in a cylinder of radius r in Rn +l can be

estimated by its integral average over the lateral boundary of a

suitable subcylinder plus an error term that tends to 0 as

r - 0 . Other results of a similar nature can be obtained in which

the lateral boundary of the subcylinder can be replaced by other

geometric objects of dimension n .

The author would like to thank Michael Crandall for several

interesting and helpful discussions during the preparation of

this paper.

2. Notation and Preliminaries.

Points in Euclidean n-space, R , will be denoted by

x = (x1, x2,...x n  In the case of a context for parabolic

equations, points in Rn+l will generally be denoted by

z = (x,t) where x c Rn and t R1 . We will denote k-dimen-

sional Hausdorff measure by Hk  Thus, H is linear measure

and Hn defined on subsets of Rn is Lebesgue measure, c.f. IF].

The Lebesgue measure of a set E c R is denoted by IE! and

J u(y)du (y) will stand for the integral average

i (E) u(y)du (y) , where P is a non-negative Radon measure with
u(E) E 0 For an open subset of an , W 'p , , will 
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denote the Sobolev space of functions whose distributional first

derivatives are functions that belong to the Lebesgue space

1,(oz). wl'P(s) will denote the closure in the Sobolev norm of

smooth functions with supports contained in ; . Througnout,

p* = np/n-p will denote the Sobolev exponent and p' = p/p-l

for 1 < p < n . rollowing common practice, the letter C will

denote a constant that may change from line to line in the same

proof.

3. Mean Values of Sobolev Functions.

Whenever E c we define, for 1 5 p < n

Yp = inf{J IvuI p }

where the infimum is taken over all non-negative functions

u WP(Rn) for which E c interior {x : u(x) l } . In tne

case p ? n , the definition must be modified to require that

the functions u c wI'P(i) have supports contained in some

fixed compact set. It is known, c.f., [FZ], that if 1 < p & n

then

y p(E) = 0 implies Hn-P+E(E) = 0 for each > 0

and

(4) Hn-p (E) ' implies Y (E) = 0
p

.4-



In the event that p = 1 , then y1 (E) = 0 if and only if

H n-(E) = 0 , [FL].

3.1 Definition. The Lebesgue set of degree s for a

Lebesgue measurable function u is the set of all points x e Rn

such that

lir r - n j U(y) - u(x)l Sdy = 0
r. iB(xr)

Here B(x,r) denotes the open ball of radius r and center x

The exceptional set of degree s for u is the complement in

Rn of the Lebesgue set of degree s for u .

It follows from classical differentiation theory that in

case u LS(Rn) the exceptional set of degree s for u has

Lebesgue measure 0 . However, in case u E W1 'P(Rn ) the ex-

ceptional set is considerably smaller. Indeed, we have the fol-

lowing, vide [FZ;§9]:

3.2 Theorem. For every u E W'p(Rn )  1 : p < n , there

wl'__(R ,lpRn }er

exists a function v e W1 P(Rn) such that u = v a.e. in Rn

and the exceptional set of degree p* for v has p capacity

0 , where p* - np/n-p .

In particular, this results implies that the integral aver-

ages of u converge at all points of Rn except perhaps those

that belong to a set of yp capacity 0 ; that is

(5) lim u(y)dy - u(x)
r,0 )B(x,r)

-5-i t
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for all x e R E , where yp(E) = 0 . The purpose of this

section is to show that the integral average taken with respect

to Lebesgue measure in (5) can be replaced by an average relative

to a more general measure.

For this purpose we introduce the space of Bessel potentials

g1 *f , f E LP(Rn) , p > 1 where the Fourier transform of g,

is given by gl(x) = (1 +4w2 1x12)- . The space of Bessel poten-

tials gl*f , f e LP(Rn ) is identical to Wl'P(Rn) , 1 < p <

The Bessel kernel g, is comparable to the Riesz kernel

R1(x) = ix l-n in a neighborhood of jxj = 0 and has exponen-

tial decrease as jxj . Moreover, gl(x)!5 clxll - n for

some constant C .

3.3 Definition. for each real number 1 S a < n , let
NL

denote the space of non-negative Radon measures m on R with

compact support which for some constant M , satisfy the growth

condition

m(Br) ! Mrn- x

on open n-balls of radius r

If p > 1 and m is a non-negative Radon measure such that

1 Lp, <n , where p' = p/p-l , then clearly

m . [W'P(Rn)]* , the dual of WI'P(Rn) . To see this, let

U WP(R n ) be written as u = g1*f , f e LP(Rn) Then, by

changing the order of integration, we have

-6-



Rudm 9*fdmi J 1*mfdx

S 1gl'm(1p, 11fEip <  ,

and thus, J udm defines a bounded linear form on WlIP(Rn)

Again, by changing the order of integration, 
we have

J (gift)P' dx J g*(gl*m)i/P 1 dm•

Therefore, by appealing to Theorems 3.3 
and 3.5 of [AMI, it fol-

lows that if p > 1 , 1 s a < p and m F M then m c [lDP(R)*

In case p = 1 , it follows from Theorem 4.7 of [MZ] that

m C 1W II(Rn)I* if m e M. The main results of [14] and

[MZI thus yield the following.

3.4 Theor Let a c RP be a bounded Lipschitz domain

and suppose 1 s p - n . Let m be a non-negative Radom measure

1 
+  I an m <P.

supported on f with m M 1 i pl and mC if p

There is a constant C = C(Q,n,p,M) such that if u e WlP(Q) ,

then

(I ju(y) - J udml dy)'/P* . C( lvulP)11P

This result will be crucial in establishing 
(5) where Lebesgue

measure in the integral average is replaced 
by m ec

If u C WlIP(Rn) , define a measure y u by

"__



YU(E) = fE IVuIp dx

whenever E is a measurable subset of Rn

Let

Pn-p = R n {x : lim sup rp -n T u [B(x,r)] > 0)
r+0

3.5 Lemma. If u C WlIP(Rn) , 1 S p < n , then

H n-p eP p 0 .

Proof: Let A k = Rn n {x lim 8 up r p - n U [B(x,r] > k-1

for each positive integer k . It follows from [F;§2.10.19]

that there is a constant C such that

Hn- p (Ak) < Ck y A)

Note that yu is absolutely continuous with respect to Lebesgue

n-p n

measure. Now Yu[Ak] < , Hn-( ) < ,H(A 0'

Yu (Ak) = 0 and Hn-l(Ak) = 0 . Hence Hn - (P n ) = 0

because P = A
n-p =uk

Let x0 k Pn-p and consider B(x0 ,1 ) . If u C WlIP(Rn )

1 :5 p < n , and if m is a measure satifying the hypothese of

Theorem 3.4 where we set 9 = B(x 0 ,1 ) , then

(6) J Iu(y) - udm P*dy)l/P* (c IVul)1 /P-B(x8-

I .8-



I.

Let Tr B(x0 ,1 ) B(x0 ,r) be defined by Tr(x0 +Y) =x + ry

where y e B(0,1) If we define ur = uoTr , then (6) implies

that

. fB(x r) l r - u o Tr dm P*dy1 /P* s C( IvurJlP i/P

which is the same as

(7) (r-n B(x0 r) lu(y) - uTrdm IP* dy)I/p *

pnr

Si C: I Vulp)l/

SC(rp n JB(x 0 ,r)

Because x k P 1 the right side of (7) tends to 0 as r + 0.0 n-p

From Theorem 2.2, there is a set E with yp(E) = 0 such that

(8) lim r-n ( ju(y) - u(x0 ) I
p * dy = 0

r+0 B(x0 ,r)

whenever x0 k E . Note that (4) and Lemma 3.5 imply y p(P np) =0

Now by setting A = E u Pn the following result follows from

(7) and (8).

3.6 Theorem. Suppose u c *n) , < n There is

a set A c Rn with y p(A) = 0 such that if x0 k A and m is

a non-negative Radon measure supported on B(x0,1) with m M +

if p= 1 and m c M+  iZ 1 s a < p , then

(9) lim u T dm =u(x0)
r+0 r

-9-



Of course, the most interesting measures to consider are

those that passess some homogeneity properties. For example,

if m = Hn-l DB(x 0 1 ) , then clearly m c M+ and

u UoTxrrdm u(y)dH n-l(y)

Thus, we have

3.7 Corollary. If u c W (Rn) there is a set A with

* n-iY1(A) = H (A) = 0 such that

lir u(y)dH- (y) = u(x0 )
r+O )aB(xr)

whenever x0 k A .

A similar result could be obtained by taking

m = Hn - 1 1 Fn-l(x 0 ) where in-l(x0 ) is an (n-l)-dimensional

plane passing through x0 . In the event that u c WlI'P(Rn)

1 < p < n , let m = Hn-R I Sn-k(x 0 ,l) where 1 : k < p is an

integer and Sn-k(x0,1) is an sn-ksphere with radius 1 centered

at x0 . Then we have

(10) lira u(y)dHn-k(y) = u(x)
r+0 Jsn-k (x 0 ,r) 0

for yp q.e. x 0 . Rn As in the case p= 1 ,a similar re-

sult follows by taking m = Hn-k n-k(x)

10



4. Lebesgue points of subsolutions of elliptic equations

In this section we obtain results for weak subsolutions and

supersolutions of quasilinear elliptic equations with measurable

coefficients that are analogous to Theorem 3.6 and its corollaries.

In the case of weak subsolutions we will show that (9) holds at

all points x0 and more importantly, that the sup u in B(x0 ,r)

is bounded above by the left hand side of (9) plus a term that

tends to 0 as r + 0

The equations that are considered in this section are of the

form

(11) div A(x,u,u ) = B(x,u,ux)x

where A and B are, respectively, vector and scalar valued
R~1 Rn

Baire functions defined on a x x R. Here a is an open

subset of Rn. The function A and B are required to satisfy

the following structural inequalities:

IA(xuw) :5 a 0 wI 1 + aljujP-i + a 2

(12) IB(x,u,w)I 5 b 0 jwj P + bljwIP- l + b21ulp-I + b 3

A(x,u,w). w k JwJ P - C lul p - C2

We assume 1 < p < n , and a0 , b0 are non-negative constants.

The results below are valid if the remaining coefficients are

non-negative measurable functions that are assumed to lie in

-11-



appropriate Lq(Q) spaces, vide [GZ], but to minimize technical

detail, we will assume that the coefficients are bounded by some

constant K > 0

(13) ai(x) s K , bi(x) K , ci(x) K

A function u e W "P(Q) is called a weak subsolution (supersolu-

tion) of (11) if

(14) j A(x,u,ux) V + B(x,u,ux)* 0 ( 0)

for all bounded 0 a 0 , 0 eW 0

The following result is due to Trudinger [TlJ whose proof is

based on the familiar Moser iteration method, (M]. Therefore, a

complete proof will not be given; however, for the convenience

of the reader, we will give an outline and provide the main steps

of the proof.

Let u E W(Q) be a weak subsolution of (11) that isLet E lo c

bounded above by L in a . Choose x0 t a and for each real

number k , let uk = (u-k)+ and define

Wk(r) = sup fuk(x) x e B(x 0 ,r)}

(15)

P(r) = sup {u(x) : x B(x,r)

4.1 Theorem. Let u c wloP() , 1 < p < n , be a weak sub-

solution of (11) such that 0 s u(x) s L for each x E . There

is a constant C depending only on L , n , p and the structure

-12-



(12) such that if B(x0 ,r) c , then

4(.0 8 Ju(r) - uly) I / y g C[p(r) - d(r/2) + a(r)]
B (x0 ,7r/8)

where a(r) = r + Kr + (Kr)P/P - l , and y < n(p-l)/(n-p)

Proof: Let

_-b0 u

(16) € = np e (p(r) + a(r) - u)(a

where n c C;[B(x0,r)] and a 0 . Then * is a bounded, non-

negative test function that can be employed in (14). If we set

v = i(r) + a(r) - u

the structure (12) and elementary estimates yield

(17) r nPvO-llv 'p p i C(a) (n p + IVn lP)vp+a+l

where C(a) is a finite constant when a is bounded away from

0 and 1 - p. Let w - vq where pq - p + - and apply

Sobolev's inequality to find that (17) yields

(18) IInwlIp C(a)jj(n + IVnI)wl

where a - n/n-p . For 0 < s < t 5 r , let C £ Co[B(xo,t)] be

such that 0 5 n 1 , , 1 on B(x0,s) and lVns 2(t's)-"

Then (18) implies

"13-

" I~i ' " '- - .. ... . . .. _ _ _ _ IA °



(1 ) IWIOP s 6 C~) t-)-1I~~

Let r. r(21 + 2) 2 ) for j = 0,1,..., and iterate inequality

(19) to obtain for any p0 > 0

(20) e(-a..r/2) z Ce(-p01 3r/4)

where

O(p,r) = BxOr (p~l

By performing a finite iteration of (19) and choosing the r. in

a different way, we have

(21) e(y,7r/8) :5 CO(p0 ,3r/4)

for any p0 > 0 and Y < n(p-1)/(n-p) .Return now to the de-

finition of the test function *and notice that in case oL= -1,

substitution of 0into (14) gives

f nP IV log VIP .5C j IVnip

whenever n cC*[B(xo1 r)] .Thus, from the John-Nirenberg lemma,

c.f. (GT, p.158], it follows that there exist constants C and

p0 > 0 such that

JB~O's v JB(X0 S) vp CS 2

-14-



for 0 < s s 3r/4 . That is,

(22) e(p0 ,3r/4) : o(-pO,3r/4)

Thus, (20), (21) and (22) imply

0(y,7r/8) 5 Ce(--,r/2)

or

(JB(x 0 ,07r/8)bi(r) + a(r) - )Y)'/ ( 7r/8)

s C min v = C[i(r) - (r/2) + a(r)]
B(x0 ,r/2)

4.2 Remark. Note that the right hand side of the inequality

in Theorem 4.1 tends to 0 with r and therefore

lim u(y)dy = lir vi(r) = lir sup u(x)
r+0 B(x0 ,r) riO x-x 0

This implies that every bounded weak subsolution of (11) is upper

semicontinuous on a after redefinition on a set of measure 0

If b0 - 0 in the structure (12), then the same conclusion

will hold without assuming that u is bounded on a . In this

case it is possible to show that a weak subsolution u e Wlocp(Q}

is locally bounded above on 0 , (SE). On the other hand, u is

not necessarily bounded below and therefore, the estimate in

Theorem 3.1 may not hold. However, one can easily show that for

.1 5-



t.

each k e R1

lrn 1ik(r) -UkI Y = 0
r+O B(x0 ,7r/8)

To see this, replace u by uk and v(r) by Vk(r) in the

definition of * , (16), and observe that the proof of Theorem

3.1 yields

(23) fB(x7r/8) IlIk(r) -ukIY) "/y<C(k) [vk(r) - ik(r/2) +a(r)]

Let A(x0) = oin i(r) and choose k < A(x0) Then
r+0

B(x 0 k7r/8) (r) - uk (X(x 0 ) - k)IB(x0 , 7r/8) n {u < k)Il

and thus, it follows from (23) that

lim r-nB(x 0 , r) n {u < = 0
r4O

Therefore, for each c > 0

lir rnIB(x0 , r) n {x : Iu(x) - X(x0)I > 0 = 0
r+O 0

This states that u is approximately continuous at x0 and that

its approximate limit at x0 is )1x 0 ) . However, every measur-

able function is approximately continuous almost everywhere and

therefore, every weak subsolution of (11) with b0 = 0 in (12)

-16-



is upper semicontinuous on a after redefinition on a set of

measure 0.

We will now show that (9) holds at all x0  sl if u is a

subsolution of (11).

4.3 Theroem. Let u e W (P) , 1 < p < n , be a weak sub-bc

solution of (11) such that 0 5 u(x) s L for each x E n For

each x 0 e R with B(x0,r0) c Q for some r0 > 0 , let m E M +

1 s a < p , be a Radon measure supported on B(x0 ,r0 /2) There

is a constant C depending only on M , L , n , p and the struc-

ture (12) such that

(24) ( or Iu(y) -fu o T rdmi P*dy)1 /P*

! Cj(r) - V(r/2) + a(r)] P - l / p

for each r s r0/2 where Tr : B(x0 ,r0 /2) - B(x0 ,r/2) is

defined by Tr (x 0 +y) = x 0 + r/r0Y .

Proof. We proceed to obtain an estimate of fBlx 0r) IvuI2

as in (GZ]. Let n - CO[B(x0 ,7r/8)] be a cut-off function such

that n S 1 on B(x0 ,r/2) and let n P eb 0 . Hence, by

substituting * into (14) and utilizing the structure (12), it

follows that there is a constant C such that

-17-

-- *.-



(25) n'-01uJp <- C[ n P1 IVnJp-IVnl + n

+ fj np-ljVh + f ripjVuj P 1]

As in the proof of Theorem 4.1, let v = p(r) -u + a(r) and use

(17) and Theorem 4.1 to obtain, for sufficiently small c > 0

(26)' f nfl lvuIp-livri = f (n Pl1V-(l+e)/PIvuIP-l) (v(l+c)/PVl)

C( f (nP + lnpv--~-/

((ij(r) - iir/2) + a(r)J(Pl1)(l+C) r* - /

:5 C([I(r) - (r/2) + a(r)] (P-l-C)r -p1/

([1i(r)' jr2- a(r)](P1(+~ r-~/

:s C[pi(r) - j(r/2) + a(r)]P l

Also, the last term in (25) can be written as

InpIvuIp-1  f (riVuj)P1ri

f J rPivuiP + c f ri

Hence, it follows from (25) and (26) that



r P-n JBIx~j' ) jIvuIP T C(u(r) - u(r/2) + a(r)] p - I

Now apply Theorem 3.4 as in the proof of (7) to establish the con-

clusion.

Because the right hand side of (24) tends to 0 as r + 0 ,

the following is immediate.

4.4 Corollary. If u W ' P() is bounded subsolution of

" -____ - bOc
(11) on n , then

lim u o Trdm = u(x0 )r+O

for each x0  a

4.5 Remark. As in (10), if we let m H n-k sn-k(x0,r0 /2)

we have for each x0 C

lira n)u(y)dHn-k (Y) - u(x 0 )r+0 fs n-k (XO~r)

whenever k is an integer such that 1 1 k < p . A similar

result holds if m is taken as the restriction of Hn-k  to an

(n-k)-plane passing through x0

Finally, we establish an inequality for weak subsolutions of

(11) which is reminiscent of the weak Harnack inequalities proved

in (Tb]
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4.6 Theorem. Let u c WoP(Q) , 1 < p < n, be a weak sub-

solution of (11) and assume that 0 5 u < L on 0 . For each

x0 4 0 with B(x0 ,r0) c Q for some r0 > 0 , there is a non-

negative function g(r) with

g(r) p
' dr

0 r

such that

supu 5 u(y)dH n-k(y) + g(r)
B(x01 r) JSn-k (x0 r)

for 0 < r < r0/2. Here k is an integer such that 1 k < p.

Proof. This follows immediately from Theorem 4.1 and (24)

for, setting c(r) = r u(y)dHn-k(y) , we have
)sn-k (x0 r)

-(r) c(r) = J u(r) - c(r)fB (x0,7r/8)

fB(x 0 ,7r/8) B(r) - ul + fB(x0 ,7r/8) ju c(r)j

s C[u(r) - jj(r/2) + a(r)] p - 1 / P

Now set g(r) = C[i(r) - i(r/2) + a(r)] p - ' / p and the conclusion

follows.

5. Parabolic Equations. In this section we consider parabolic

equations of the form
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(27) ut - div A(x,t,u,ux) + B(xt,u,ux )

1 nwhere A and B are Baire functions defined on nT x R x R
T

Here fT - n x (0,T) where 9 is an open subset of Rn

The structure imposed on A and B is similar to that con-

sidered in the elliptic case, (12):

IA(x,t,uw)l s a0 1wJ + alluI + a2

(28) IB(x,t,u,w)l 5 b 0 1w1 2 + blwI + b21ul + b 3

A(x,tu,w) * w Z IwI 2 - cluI2 -c 2

a0 and b0 are non-negative constants and the remaining coef-

ficients are required to lie in appropriate Lebesgue spaces, c.f.,

[LSU], [T21, but as in 14, for simplicity of exposition, we will

assume that all coefficients are bounded by some constant K > 0

A function u "W,(A is called a weak subsolution (super-A fncton €locuT;

solution) of (27) if

(29) f - uft + A - 9- B4% 0 (a0)

for all bounded 0 z 0 , e

The object of this section is to establish results for sub-

solutions of (27) analogous to those in Theorems 4.3 and 4.6. For

this purpose we consider an arbitrary point Z0 C aT , and for con-

venience, set Z0 - (0,0) . We shall utilize space-time cylinders

of the follwoing form:
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R(r) = B(r) x (or 2 a2r 2)

i Tl2 22R(r) = B(or) x ( T

* 2 2

(r) = B(Or) x (p 1 ,P2r

where B(r) denotes the n-ball of radius r and center x = 0

and where

0 < < < a1<

(30)

01 < P < P2 < P 3 < 0 < P 4 < 02

Note that

(31) R(r/2 ) c R-(r)

N. Fnall, fo u W1,2

for some integer N .TFinally, for u E ) a subsolution

of (27), let

i(r W= sup{u(z) : z e R(r).

The following result is proved in [T21 and its proof runs parallel

to that of the elliptic version in Theorem 4.1.

5.1 Theorem. Let u d Wo2 (9T) be a weak subsolution of
loc T

(27) such that 0 5 u(z) : L for each Z n fT " There is a
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number y > 1 and a c 'istant C depending only on L , n , and

the structure (28) and (30) such that if R(r) c aT ' then

(u(r}- ulY)u/Y s C min [P(r) - u + a(r)]
JR*(r) R-(r)

where a(r) = r + Kr

We now will establish an estimate on the growth of V2-norm

of u(r) - u where u is a weak subsolution of (27). This

estimate is similar to the one that appears in [Z2, Theorem 4.3]

and is the parabolic analogue of the estimate that appears in

Theorem 4.3 above.

For this purpose let u be a bounded, non-negative weak

subsolution of (27) and let

(32) = n2 u e 0

where n is a smooth cut-off function that will be specified

below. Because u is assumed to be bounded, we may assume that

the terms involving allul , b2 1ut , and cl)u) 2 in (28) can be

absorbed in a2 , b3 and c2 respectively. Therefore, substi-

tution of (32) into (29) yields

(33) i 2 eb0uut + (i 2 eb0u + b0 u)(Ivul 2 - C2)

Jj boU
5 2nu e [a.lVUI + a 2 ]IVni

+f In2 0b OIUo
uJub 2 + bllVuI + b 33
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Now let v p (r) - u (for simplicity we will write w = i(r)

and define

- boU -1 -_ eb -1_

(34) f(u) = b 1 e (b u) - b (b0 b-

Then,

bou
(35) f' (u) -u e 0

bou

k"(u) = -e 0 (1 + b 0u)

401(2 - u 2 ) !5 f(u) 5 i e b - u) for 0 5 u - •

There is a constant C such that (33) can be written as

(36 fJ2 af~u) + ffn2rvuj2(36) n

:S C[.1 njvujIVn! + f) ~2 + If n1vnj + 2ff uj

The constant C depends upon the structure (28) and the bound

for lul . Now define

R'(r) = R*(yr)

where 0 < Y < 1- and choose n so that r 1 on R' (r) and
spt n c R*(r) . Refer to (30) and set t2 and t2  p2r

Choose t* e (t11t2) so that
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r,2 (x,t*)f2(x,t*) dx > sup r 2(X,t)f 2 (x,t) dxj (t 1 1 t 2 )

If we replace t by t* in (36), we are led to the following

estimate:

(37) sup f[nf(xt)]2 dx + JJ n2 Vv 2 dxdt
(t1 , t 2 )

Sc[f nVuJJVnj + if n2 + JJ nVnl

+ ff n2jVuj + fJ nntlf]

We now proceed exactly as in the proof of Theorem 4.3 above to

estimate the rate at which the right-side of (37) tends to 0.

Indeed, by employing (31) and Theorem 5.1, we find that there is

a constant C depending only on the given data such that the

first four terms on the right-side of (37) are bounded by

(38) C r n[, (r) - ij(r/2 N ) + a(r)]

Refer to (35) to find that Jf(u)j :5 Clvj and therefore, by

using Theorem 5.1 again, we have

(39) fI nlnt ] jf(u) s C rn,, (r) - u(r/ 2N) + a(r)]

Referring again to (35), the following lemma now follows from

(37), (38) and (39).
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5.2 Lemma. Let u e Wo, (ST) be a bounded, non-negative

weak subsolution of (27). Then,

sup f [u(r) - u 2dx + Ivu2dxdt
(tlt 2 ) fB(ayr) JR'(r)

5 C r n[w(r) - p(r/2 N ) + a(r)]

whenever R(r) c iT

We are now in a position to establish the parabolic analogue

of Theorem 4.3. This result is concerned with the behavior of a

weak subsolution in a neighborhood of an arbitrary point Z0 C T

We will continue to assume that Z = (0,0) and the geometric
0

configuration imposed by (30).

5.3 Theorem. Let u e Wlo (ST) be a bounded, non-negative

weak subsolution of (27). For each Z0 C ST with R z(r ) c T
M+

for some r0 > 0 , let m E M , 1 : a < 2 , be a Radon measure

supported on B(Oyr 0) x {t} There is a constant C depending

only on the bound for u and the given data such that

Yt 2
2 f Ju(xt) - f u o Tr (yt) dm(y) 2 dxdt

yt I B (B Y r)r

! C [)(r) - ji(r/2 N ) + a(r)]

for each r 5 r 0 where Tr : B (Or 0 ) x (t) B(Byr) x {t) is

defined by T (x,t) = (r/r0x,t)r 0
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Proof. Because u c W1 I2 (S ) it is an elementary factIc T

concerning Sobolev functions that u(-,t) e £ , x {t)) for

a.e.t. For all such t apply Theorem 3.4 to obtain

02

B( I)u x,t) - 2
l*xt -~B( )uoT(y, t) dm (y) I dx

! C r2 - 'B(Byr) Ivu(x,t) I2 dx

Now integrating with respect to t from yt = yplr 2  to

Yt2 = 2r2  and applying Lemma 5.2 yields the desired result.

5.4 Corollary. For each Z0 E QT with (r c aT for

some r > 0, there is a non-negative function g(r) with

0o

such that

Yt

supu f f u o Tr(yt) dm(y) dt + g(r)R(r) yt1

for 0 < r ! r0

Proof. From Theorems 5.1 and 5.3, it follows that

-27-
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'ft2

f [(r) - f u o Tr(Yt) dm(y)l 2 dt
'ft1

y= B(t2  f [Iu(r) - f u T ((Y't) dm(y)2 dxdtyt I B (S -y r)r

'f1
U: yt2

: C fj ( (r) - ul2 + C 
R' (r) fyt I B(S r)

Iu(xt) - f u o Tr(y,t) dm(y) 12 dxdt

C[u(r) - u(r/2 ) + a(r)]

Thus,

ytt2

f1(p(r) - f u o Tr(Y,t)dm(y) dt

< C[u(r) - u(r/2 N ) + a(r)j

The result now follows if we set

g(r) = C[I(r) - (r/ 2 N) + a(r)] .

As in §4, the most interesting case to consider is when the

measure m is taken as a geometric measure with certain homo-

geniety properties. For example, let

m Hn 1 I S n(x 01( r 0 ) x {t)

Then,
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f u *Tr(,) Sn - (x , r) x(t) u(y,t)dH (y)

and therefore

yt 2  y t 2

ft f u o T r (yt) dm (y) dt = Kyt fn-1( ,yx u(y,t)dH nl(y)yt 1t 1sn' (Xo,#Byr) x {t}

= u (z)dHn (z)

where 3*RI (r) denotes the lateral boundary of the cylinder

R'(r)

We have thus proved

5.5 Corollary. For each Z0 C aT with Rz0(r) c T for

some r0 > 0 , there is a non-negative function g(r) with

[g(r) 2 d <

0

such that

supu ! u(z)dHn (z) + g(r)
R(r) Ja*R'(r)

for 0 < r s r 0

As in §3 and 34, one could establish similar results by

making different selections for the measure m . For example, in

addition to the choice made in the above corollary, one could

also take m- Hn- 1  
1 n-l(x 0  x {t) where nn-i is an (n-i)-

plane that is orthogonal to the t-axis.
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